Red inalámbrica
El término red inalámbrica (en inglés: wireless network) se utiliza en informática para designar la conexión de nodos que se da por medio de ondas electromagnéticas, sin necesidad de una red cableada o alámbrica. La transmisión y la recepción se realizan a través de puertos.
Una de sus principales ventajas es notable en los costos, ya que se elimina el cableado ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe tener una seguridad mucho más exigente y robusta para evitar a los intrusos.
Tipos de redes inalámbricas[editar]
Según su cobertura, las redes inalámbricas se pueden clasificar en diferentes tipos:
WPAN: Wireless Personal Area Network[editar]
En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto) (similar a un número de serie único) mediante ondas de radio.
Una Picnet es una red formada por dispositivos Móviles utilizando tecnología Bluetooth. Es una derivación de WPAN. Está formada por dos a siete dispositivos, la picnet sigue una estructura de maestro-esclavo donde el maestro es el que proporciona la conexión mediante un request que envía el esclavo. El maestro al establecer la conexión, define en que frecuencia va a trabajar.
Tiene un alcance máximo de 10 metros y puede aumentar juntando varias piconets formando una Scatternet, donde un nodo esclavo hace a su vez el rol de un maestro proporcionado conexión más esclavos.
El alcance típico de este tipo de redes es de unos cuantos metros, alrededor de los 10 metros máximo. La finalidad de estas redes es comunicar cualquier dispositivo personal (ordenador, terminal móvil, PDA, etc.) con sus periféricos, así como permitir una comunicación directa a corta distancia entre estos dispositivos.
WLAN: Wireless Local Area Network[editar]
Véase también: Red de área local inalámbrica
Se encuentran tecnologías basadas en Wi-Fi, un estándar H de comunicación inalámbrica basado en la norma IEEE 802.11. Puede presentar mejoras con respecto a la velocidad según sus estándares y alcanza una distancia de hasta 20 km.
Utiliza Access Point para distribuir equipos de comunicación inalámbricos, y ese mismo forma una red inalámbrica que interconecta dispositivos móviles o tarjetas de red inalámbricas.
WMAN: Wireless Metropolitan Area Network[editar]
Véase también: Red de área metropolitana
Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access), es decir, Interoperabilidad Mundial para Acceso con Microondas, un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).
WWAN: Wireless Wide Area Network[editar]
Véase también: WAN
Una WWAN difiere de una WLAN (Wireless Local Area Network) en que usa tecnologías de red celular de comunicaciones móviles como WiMAX (aunque se aplica mejor a Redes WMAN), UMTS (Universal Mobile Telecommunications System), GPRS, EDGE, CDMA2000, GSM, CDPD, Mobitex, HSPA y 3G para transferir los datos. También incluye LMDS y Wi-Fi autónoma para conectar a internet.1
Tipos según el rango de frecuencias[editar]
Según el rango de frecuencias utilizado para transmitir, el medio de transmisión pueden ser las ondas de radio, las microondas terrestres o por satélite, y los infrarrojos, por ejemplo. Dependiendo del medio, la red inalámbrica tendrá unas características u otras:
- Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.
- Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias inalámbricas.
- Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.
licaciones[editar]
- Las bandas más importantes con aplicaciones inalámbricas, del rango de frecuencias que abarcan las ondas de radio, son la VLF (comunicaciones en navegación y submarinos), LF (radio AM de onda larga), MF (radio AM de onda media), HF (radio AM de onda corta), VHF (radio FM y TV), UHF (TV).
- Mediante las microondas terrestres, existen diferentes aplicaciones basadas en protocolos como Bluetooth o ZigBee para interconectar ordenadores portátiles, PDAs, teléfonos u otros aparatos. También se utilizan las microondas para comunicaciones con radares (detección de velocidad u otras características de objetos remotos) y para la televisión digital terrestre.
- Las microondas por satélite se usan para la difusión de televisión por satélite, transmisión telefónica a larga distancia y en redes privadas, por ejemplo.
- Los infrarrojos tienen aplicaciones como la comunicación a corta distancia de los ordenadores con sus periféricos. También se utilizan para mandos a distancia, ya que así no interfieren con otras señales electromagnéticas, por ejemplo la señal de televisión. Uno de los estándares más usados en estas comunicaciones es el IrDA (Infrared Data Association). Otros usos que tienen los infrarrojos son técnicas como la termografía, la cual permite determinar la temperatura ("calor") de objetos a distancia.
Seguridad[editar]
Para poder considerar una red inalámbrica como segura, debería cumplir con los siguientes requisitos:- Las ondas de radio deben confinarse tanto como sea posible. Esto es difícil de lograr totalmente, pero se puede hacer un buen trabajo empleando antenas direccionales y configurando adecuadamente la potencia de transmisión de los puntos de acceso.
- Debe existir algún mecanismo de autenticación en doble vía, que permita al cliente verificar que se está conectando a la red correcta, y a la red constatar que el cliente está autorizado para acceder a ella.
- Los datos deben viajar cifrados por el aire, para evitar que equipos ajenos a la red puedan capturar datos mediante escucha pasiva.
Referencias[editar]
- ↑ «Wide-Area Wireless Computing - Network Computing». Archivado desde el original el 5 de mayo de 2011. Consultado el 8 de noviembre de 2011.
Bibliografía[editar]
- Madrid Molina, J. M. (2006). Seguridad en redes inalámbricas 802.11. Sistemas Y Telemática. Consultado el 1 de marzo de 2016. http://bibliotecadigital.icesi.edu.co/biblioteca_digital/handle/10906/400
CARACTERISTICAS DE RED INALAMBRICALas redes inalámbricas no es más que un conjunto de computadoras, o de cualquier dispositivo informático comunicados entre sí mediante soluciones que no requieran el uso de cables de interconexión.En el caso de las redes locales inalámbricas, es sistema que se está imponiendo es el normalizado por IEEE con el nombre 802.11b. A esta norma se la conoce más habitualmente como WI-FI (Wiriless Fidelity).Con el sistema WI-FI se pueden establecer comunicaciones a una velocidad máxima de 11 Mbps, alcanzándose distancia de hasta cientos de metros. No obstante, versiones más recientes de esta tecnología permiten alcanzar los 22, 54 y hasta los 100 Mbps.VENTAJAS DE LAS REDES INALÁMBRICAS· FlexibilidadDentro de la zona de cobertura de la red inalámbrica los nodos se podrán comunicar y no estarán atados a un cable para poder estar comunicados por el mundo.· Poca planificaciónCon respecto a las redes cableadas. Antes de cablear un edificio o unas oficinas se debe pensar mucho sobre la distribución física de las máquinas, mientras que con una red inalámbrica sólo nos tenemos que preocupar de que el edificio o las oficinas queden dentro del ámbito de cobertura de la red.· DiseñoLos receptores son bastante pequeños y pueden integrarse dentro de un dispositivo y llevarlo en un bolsillo, etc.· Calidad de ServicioLas redes inalámbricas ofrecen una peor calidad de servicio que las redes cableadas. Estamos hablando de velocidades que no superan habitualmente los 10 Mbps, frente a los 100 que puede alcanzar una red normal y corriente. Esto puede llegar a ser imposible de implantar en algunos entornos industriales con fuertes campos electromagnéticos y ciertos requisitos de calidad.· CosteAunque cada vez se está abaratando bastante aún sale bastante más caro. Recientemente en una revista comentaban que puede llegar a salir más barato montar una red inalámbrica de 4 ordenadores que una cableada si tenemos en cuenta costes de cablear una casa.DESVENTAJAS DE LAS REDES INALÁMBRICAS- Menor ancho de banda.Las redes de cable actuales trabajan a 100 Mbps, mientras que las redes inalámbricas Wi-Fi lo hacen a 11 Mbps. Es cierto que existen estándares que alcanzan los 54 Mbps y soluciones propietarias que llegan a 100 Mbps, pero estos estándares están en los comienzos de su comercialización y tiene un precio superior al de los actuales equipos Wi-Fi.- Mayor inversión inicial.Para la mayoría de las configuraciones de la red local, el coste de los equipos de red inalámbricos es superior al de los equipos de red cableada.- Seguridad.Las redes inalámbricas tienen la particularidad de no necesitar un medio físico para funcionar. Esto fundamentalmente es una ventaja, pero se convierte en una desventaja cuando se piensa que cualquier persona con una computadora portátil solo necesita estar dentro del área de cobertura de la red para poder intentar acceder a ella.- Interferencias.Las redes inalámbricas funcionan utilizando el medio radio electrónico en la banda de 2,4 GAZ. Esta banda de frecuencias no requiere de licencia administrativa para ser utilizada por lo que muchos equipos del mercado, como teléfonos inalámbricos, microondas, etc., utilizan esta misma banda de frecuencias. Además, todas las redes Wi-Fi funcionan en la misma banda de frecuencias incluida la de los vecinos. La mayoría de las redes inalámbricas funcionan perfectamente sin mayores problemas en este sentido.- Incertidumbre tecnológica.La tecnología que actualmente se esta instalando y que ha adquirido una mayor popularidad es la conocida como Wi-Fi (IEEE 802.11B). Sin embargo, ya existen tecnologías que ofrecen una mayor velocidad de transmisión y unos mayores niveles de seguridad, es posible que, cuando se popularice esta nueva tecnología, se deje de comenzar la actual o, simplemente se deje de prestar tanto apoyo a la actual..Comunicación inalámbrica
En el inicio de la fase de la red celular, la capacidad no era el problema esencial debido a que existían pocos usuarios.
Las estaciones bases están situadas dependiendo del máximo rango en que puedan ser acomodadas. Este rango depende de las características físicas del ambiente; las frecuencias de programación y el beneficio de la antena; y las características específicas del equipo para ser desplegado. Como la capacidad no es importante, en este escenario son utilizados grandes grupos, que proporcionan una insignificante interferencia. Esta interferencia proviene de grupos vecinos de móviles que usan el mismo canal.
Mientras la red madura, la capacidad comenzará a dar un importante incremento. El tamaño del grupo es disminuido mientras se mantengan los Ratios de Interferencia de la Señal (SIR), en un rango que garantice que la calidad de enlace sea aceptable. En los sistemas de la primera y segunda generación, en el caso americano (sistemas analógicos) se utilizaba el AMPS y en el caso europeo (sistemas digital) se utilizaba el GSM. Ambos utilizaban grandes celdas.
Estas celdas tienen antenas ubicadas en el tope de los edificios altos, donde la carga de rentas era alta, para evitar estas rentas adicionales de los sitios para las BS y acondicionar además el terreno de las variaciones del edificio, las antenas unidireccionales fueron reemplazadas por unas direccionales, la cual partición la celda en sectores. La escorificación generalmente origina el incremento en el SIR, el cual mejora la calidad de la transmisión de radio. Si la escorificación no se hace cambiando el tamaño del grupo, entonces cada sitio de BS tiene el mismo número de canales. Supongamos que cada celda está dividida en tres sectores, y de aquí los canales en cada sector es un tercio del total de los sitios de los canales. Para el mismo bloque aceptado, probablemente, el tráfico llevado por el sitio es tres veces el tráfico llevado en cada sector, y este es menor que el tráfico llevado por la celda original antes de la sectorización.
El mínimo aceptable de SIR (denotado por SIRmin) es un sistema específico. Por ejemplo, en una red simple FDMA, el promedio SIR requerido debe ser aproximadamente 18 db. Usando Transmisiones Discontínuas (DTX) significa que la transmisión se detiene, ya sea mientras un usuario no está hablando, cuando ocurre un salto de frecuencia de las portadoras o cuando el control de poder del transmisor está limitado a proveer solamente el suficiente poder recibido para garantizar la calidad del enlace, con lo cual los sistemas pueden permitir un bajo SIRmin de 9 db. Los SIRmin bajos permiten pocas celdas por grupo a ser usadas y los GSM tienen de dos a tres veces la capacidad de un UK analógico de un TACS.
MICROCELDAS
Los Sistemas de Comunicación Personal (PCS) son frecuentemente diferenciados de la telefonía celular, porque proporcionan servicios a cada uno, donde quiera, además proporcionan gran capacidad de la red, cobertura omnipresente, pocos equipos, bajos costos de infraestructura y facilidades de desarrollo de las BS. Las microceldas son usadas en los sistemas celulares, de tal manera que el tamaño y el costo son reducidos. Las BS son pequeñas y no tan costosas para los sistemas sin cable como es el caso de los sistemas de teleComunicaciones sin cables europeos (CT-2) y los sistemas de teleComunicaciones digital sin cable (DECT), pero estos no son diseñados para redes celulares ni para aquellos que suministran alta capacidad de requerimiento para los PCS.
Las macroceldas convencionales son interconecta-das a centros móviles típicamente configurados inicialmente con las facilidades de una vía de transmisión estándar, como lo es de 1.5 Mbits/seg (estándar norteamericano, T1 ) o 2 Mbits/seg (estándar europeo, E1) de enlace.
La interconexión de microceldas es y será completamente diferente. Algunas microceldas son esencialmente "Sitios de Radiación Remota", donde los RF o IF de señales de radio móviles son transmitidos a través de un enlace óptico, o un enlace de radio punto a punto, para una distribución puntual de microondas que actúa como el centro físico de una microcelda.
Situando una BS en los sistemas de primera y segunda generación, involucra el uso relativo de herramientas de planeación, para predecir la cobertura de radio de la posición de una BS con errores de pérdida de ruta que a menudo exceden 20 db y usualmente requieren soportar la propagación de las medidas y encontrar dueños que permitan rentar sus propiedades para el despliegue de la BS. Las herramientas de predicción para el piso de las microceldas son más exactas, por la condición de que la antena de las BS deben estar montadas por debajo del horizonte de la ciudad. La propagación de la microonda en la microcelda es esencialmente determinada por la topología de las calles y edificios y además las microceldas son irregulares si las calles son irregulares.
CELDAS MIXTAS
Hay muchos tipos de celdas cuyo tamaño y forma están determinada por los niveles de poder de radiación, la ubicación de la antena y el desarrollo físico de la región. Se ha descrito como determinar los pisos de las microceldas por las inmediaciones de la topología de las calles y los edificios.
Ubicando las BS en el tope de los edificios más altos, se produce una macrocelda. Los nodos de la celda suministran una gran capacidad de radio en el nodo de la red, un tipo de celda telepunto. Podemos arreglar picoceldas de pocos metros de diámetros en un cuarto de un edificio, celdas en un área grande rural, a megaceldas, a lo largo de celdas satelitales (>500 km). Podemos anticipar que pueden existir geográficamente celdas mixtas.
Teniendo sistemas celulares multidimensionales, multiniveles y celdas multitamaño profundamente compuesta por planes complejos de frecuencias. Un ancho de banda particionado puede ser adoptado. Por ejemplo las microceldas pueden dar el mayor ancho de banda, si ellas son capaces de operar con una alta capacidad y soportar grandes variedades de servicios.
Las macroceldas pueden usarse en diferentes bandas de frecuencias desde las calles de microceldas. Las oficinas de microceldas pueden tener una única banda para prevenir que interfieran con móviles en las calles de microceldas, pero hay dificultades para suministrar buenos planes de frecuencias para las microceldas de oficinas en los edificios adyacentes, y dentro del edificio.
Equipo inalámbrico[editar]
Algunos de los equipos de punto de acceso que normalmente vienen con antena omni 2 Dbi, muchas veces desmontables, en las cuales se puede hacer enlaces por encima de los 500 metros y además se pueden interconectar entre sí. No debe haber obstáculos para que la señal sea excelente, ya que esto interfiere en la señal y puede haber problemas en la conexión.
¿Como funciona una red inalámbrica?
Existen diferentes tecnologías, diferenciadas por la frecuencia que utilizan, el alcance y la velocidad de transmisión. Las redes inalámbricas facilitan la conectividad entre dispositivos remotos, que se encuentran a unos metros de distancia o a varios kilómetros.
Clasificación
Funcionamiento
Este proceso se denomina modulación de la portadora por la información que esta siendo transmitida, si las ondas se transmitidas a distintas frecuencias de radio es posible que existan varias portadoras en el mismo tiempo y espacio sin interferir entre ellas.
El receptor debe situarse en la misma frecuencia que la portadora e ignorar al resto este funcionamiento es similar al de una red cableada, en la cual el receptor debe conectarse a la red mediante el cableado normalizado.
En las redes inalámbricas de área local, las comunicaciones pueden realizarse de dos maneras: AD hoc (BSS) o infraestructura
Infraestructura (BSS)
En el modo de infraestructura la comunicación se realiza mediante puntos de acceso (access point); estos permiten conectar la red inalámbrica a una red cableada.
Estas redes funcionan sobre la base de ondas de radio específica. El AP actúa como una puerta de entrada a la red inalámbrica en un lugar especifico y una cobertura de radio determinada, para cualquier dispositivo que solicite acceder, siempre y cuando este configurado y tenga los permisos necesarios para hacerlo.
Ventajas de las redes inalambricas
No hay comentarios:
Publicar un comentario